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1 Introduction

This review is the latest in a series that began in 1994 and covers
new approaches to the synthesis of thiols and selenols,
disulfides and diselenides, sulfides and selenides, sulfoxides and
selenoxides, and sulfones and selenones.1–4 Unlike previous
reviews in the series, cyclic systems have been covered and are
considered alongside related acyclic systems. Each section deals
first with general routes to simple systems, and then proceeds to
discuss the synthesis of more heavily functionalised molecules.
As with previous reviews in the series, emphasis has been placed
on new stereo- and enantioselective reactions, and in addition,
new areas of interest such as solid phase chemistry are also
discussed.

2 Synthesis of thiols, sulfides and disulfides, and selenols,
selenides and diselenides

2.1 Preparation of thiols, disulfides, selenols and diselenides

As thiols are readily obtained by the reduction of disulfides, the
disulfide moiety is a convenient protecting group for use in the
synthesis of more complex thiols. 29-Thiouridine 59-phosphate
1 has been conveniently prepared by deprotection of a mixed
disulfide precursor, and has been shown to be a potent inhibitor
of the E. coli ribonucleotide reductase.5 2,4-Dinitrophenyl
4-methoxybenzyl disulfide is a new reagent for the electrophilic

sulfenylation of enolates. Deprotection of the 4-methoxybenzyl
group allows the corresponding thiol to be prepared (Scheme
1).6 Similarly, thioacetates can be used for the protection of the
thiol group. A mild method for the deprotection of primary,
secondary, tertiary and aryl thioacetates has recently been used
to chemoselectively deacetylate a thioacetate group in the pres-
ence of acetate groups (Scheme 2).7 The synthesis of optically
active γ-keto-thiols and the corresponding thioacetates has
been achieved via the lipase catalysed hydrolysis of β-methyl-γ-
keto thioacetates (Scheme 3).8 Tertiary and allylic thiols have
been prepared by treatment of the corresponding halides with
zinc thiocyanate followed by hydrolysis and reduction of the
intermediate thiocyanate.9 An improved synthesis of the syn-
thetically important ligand, (1S)-(1)-10-mercaptoisoborneol 2,
from (1S)-(1)-camphor-10-sulfonyl chloride has recently been
reported.10 A general route to the important, naturally occur-
ring antioxidants, 4-mercaptoimidazoles, has recently been
reported.11 Novel heterocyclic thiols have been prepared in
moderate yield by the reaction of bis-nucleophiles, such as
hydrazines, with ketene dithioacetals (Scheme 4).12 Thiols have
also been prepared from the corresponding halides using a
polymer-supported hydrosulfide reagent. Simple filtration and
evaporation allows the product thiols to be isolated whilst the
recovered resin can be conveniently regenerated and reused
(Scheme 5).13
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The regioselective ring-opening of epoxides with triisopro-
pylsilane thiol and DBU generates 2-triisopropylsilyloxyalkyl
thiols after spontaneous migration of the silicon group from
sulfur to oxygen (Scheme 6).14 Optically active (R,S)- and
(S,R)-tricarbonyl{2-[1-(dimethylamino)ethyl]benzenethiol}
chromiums have been prepared in modest yield by regioselective
ortho-lithiation of the parent chromium tricarbonyl complex
and subsequent reaction with elemental sulfur (Scheme 7).15

The ring-opening of meso-epoxides with these benzenethiol
chromium reagents has been investigated.15

The treatment of chlorinated benzyl thiols with butyllithium
followed by lithiation with an excess of lithium powder and a
catalytic amount of 4,49-di-tert-butylbiphenyl (DTBB), gives
the corresponding dianion which reacts with carbonyl com-
pounds to give alkylated products in modest yield (Scheme 8).16

In a related study, the treatment of readily prepared 1,3-
oxathiines with lithium and a catalytic amount of DTBB, gives
2-(2-mercaptophenyl)ethyl alcohols in moderate yield (Scheme
9).17 The use of selenocarbamates, selenoacetates and seleno-
carbonates as protecting groups for selenols has recently been
reported.18

Symmetrical disulfides can be obtained by the oxidation
of thiols. Several new reagent systems for this transformation
have been reported and these include molecular oxygen and an
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nitrates; 21 copper() nitrate dinitrogen tetroxide; 22 ‘chemical’
manganese dioxide; 23 and aqueous sodium hypochlorite,
or tert-butyl chloride and potassium carbonate.24 Sym-
metrical disulfides have also been prepared by the kaolinitic
clay catalysed one-pot reaction of sulfur monochloride with
simple aromatics.25 The reduction of arenesulfonyl chlorides
with samarium metal, nickel() chloride and potassium iodide
gives symmetrical aryl disulfides in good yield.26 Symmetrical
dialkyl disulfides have been prepared by the reduction of alkyl
thiocyanates with samarium metal and titanium tetrachlor-
ide.27 The cerium() trifluoromethanesulfonate mediated ring-
opening of thiiranes in acetic acid and alcoholic solvent gives
disulfide products in good yield (Scheme 10).28

Cyclic disulfides have been prepared by oxidation of dithiols
with a catalytic rhenium–dimethyl sulfoxide oxidising system
(Scheme 11),29 and by the reaction of elemental sulfur with 1,3-
dienes.30 The first isolable dithiirane, a three-membered ring
disulfide, has recently been prepared.31
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Selenocyanates can be converted into either selenolates or
diselenides selectively on treatment with sodium hydride simply
by varying the amount of reducing agent and the temperature
used (Scheme 12).32 The reduction of selenocyanates, having
ketone or aldehyde groups elsewhere in the molecule, with
samarium() iodide at low temperature, gives the correspond-
ing diselenides in excellent yield and with complete chemoselec-
tivity (Scheme 13).33 -Selenocystine and -[ 77Se]selenocystine
are useful nuclear magnetic resonance probes and have been
prepared from a protected iodoalanine derivative (Scheme
14).34 Finally, dialkenyl diselenides have been prepared by
treatment of ketone toluene-p-sulfonyl hydrazones with base
and elemental selenium (Scheme 15).35

2.2 Synthesis of sulfides and selenides
2.2.1 Simple sulfides and selenides

The deoxygenation of simple sulfoxides and selenoxides with
nickel boride, formed in situ from nickel chloride and sodium
borohydride, has been reported.36 Titanium() porphyrin com-
plexes have also been found to deoxygenate sulfoxides by a two
electron process which results in overall oxygen transfer from
sulfur to titanium.37 Symmetrical dialkyl sulfides have been
prepared by the treatment of alkane thiols with an alumina
catalyst.38 A biomimetic alkyl transfer process in which an alkyl
ammonium salt reacts with phenylthiolatocobaloxime to give
alkyl phenyl sulfides has been reported (Scheme 16).39 Unsym-
metrical sulfides can be prepared by the treatment of thiols with
n-butyllithium followed by quenching with alkyl halides.40

Further studies on the selective phenylselenation of saturated
hydrocarbons using Gif chemistry have been carried out and
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have led to improved conditions for the process (Scheme 17).41

Simple unsymmetrical selenides have been prepared by reduc-
tion of the Se–Si bond in arylselenotrimethylsilanes with
samarium() iodide. The samarium areneselenolates formed
react with alkyl halides to give the desired selenides in good
yield (Scheme 18).42 An otherwise analogous method for the
preparation of unsymmetrical sulfides has also been reported.43

A general route to α-ethoxycarbonyl sulfides has been
reported and involves the ruthenium porphyrin catalysed select-
ive insertion of ethyl diazoacetate (EDA) into the S–H bond of
thiols. Interestingly, and in contrast to alternative catalysts,
competitive insertion into the O–H bond is not observed
(Scheme 19).44 Further studies on the intramolecular carbo-
lithiation of vinyl sulfides have been carried out. Employing
duryl vinyl sulfides leads to α-durylthioalkyllithiums which
have increased configurational stability. The stereochemical
outcome of the carbolithiation process has thus been investi-
gated using these more stable intermediates and found to be
dependent on the initial olefin geometry (Scheme 20).45

The development of sulfur-atom transfer reagents continues
to be an area of great interest. The direct formation of thiiranes
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has been reported.46 In a related system, treatment of the
sultene cycloadduct 3 with acid triggers efficient sulfur-atom
transfer to reactive alkenes (Scheme 21).47 Thiiranes have
also been prepared directly from epoxides in a process
catalysed by ruthenium trichloride (Scheme 22).48 The rhodium
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acetate catalysed sulfur-atom transfer from propylene sulfide
to norbornene has also been reported but requires more
forcing conditions.49 Thiiranes have also been prepared by the
reduction of S-(β-oxoalkyl) thiophosphinates with sodium
borohydride (Scheme 23),50 and by the addition of diethoxy-
(oxo)phosphoranesulfenyl chloride to alkenes followed by treat-
ment with fluoride.51

A number of new approaches to the preparation of cyclic
sulfides have been reported. Enantiopure (2R,5R)-(1)-2,5-
dimethylthiolane 4 has been prepared via a route involving the

enzymatic reduction of acetonylacetone.52 Thiolanes have also
been prepared in a stereocontrolled manner by treatment of
enantiomerically pure 4-benzylsulfanyl-1,3-diols with toluene-
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p-sulfonyl chloride. The process occurs via 1,4-participation of
the benzylsulfanyl group and debenzylation of the key sulfon-
ium salt intermediate (Scheme 24).53 Various hydroxylated
thiepanes prepared from -mannitol, undergo ring contraction
via Lewis acid induced transannular cyclisations to give
hydroxylated cyclic sulfides in good yield (Scheme 25).54 Substi-
tution of sulfur for oxygen in the carbohydrate moiety of
nucleosides has provided compounds that have extremely use-
ful biological activity. -49-Thioarabinofuranosyl pyrimidine
nucleosides have recently been prepared from xylose, and the
α-anomer 5 has been shown to have significant anti-viral activ-
ity.55 The replacement of oxygen with sulfur in a bicyclic carbo-
hydrate analogue has recently been achieved by intramolecular
thiolate addition to an acetal protected 59,69-diol (Scheme
26).56 Thietanose 6, a little studied four-membered sugar
analogue, has also been prepared.57 The anti-viral agent
Lamivudine has been prepared by an approach involving
enzymatic resolution of appropriately substituted α-acetoxy
sulfides. Hydrolysis of the enantiomerically enriched α-acetoxy
sulfides, and in situ cyclisation gives cyclic S,O-acetals with
almost complete retention of stereochemical integrity (Scheme
27).58 The direct α-functionalisation of 1,3-oxathiolanes using
benzoyl peroxide has been employed in the synthesis of 1,3-
oxathiolane cytosine nucleosides.59 The stereoselective synthesis
of syn- and anti-thiepane-4,5-diols from the heterocyclic
precursor 7 has been achieved by reduction using chelating and
non-chelating reducing agents (Scheme 28).60

Cyclic selenides have been prepared by thermolysis of
benzylseleno (phenyltelluro)formates in an unexpectedly facile
nucleophilic displacement of the telluroformate group by
the selenium atom (Scheme 29).61 The treatment of 2-(3-
hydroxyalkylseleno)benzoxazoles with potassium hydride
gives selenetanes in good yield. The reaction is thought to occur
via a spiro-intermediate which then breaks down to generate a
selenolate ion (Scheme 30).62
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The nucleophilic displacement of leaving groups with thio-
late anions is a convenient method for the synthesis of sulfides.
The preparation of fluorescent structural probes via func-
tionalisation of Anatoxin A, a potent nicotinic agonist, is
conveniently achieved by treatment of α-tosyloxy ketone 8 with
thiolates (Scheme 31).63 The reaction of α-halo ketones with
sodium alkyl thiosulfates in the presence of indium metal in
aqueous media gives phenacyl sulfides in good yield (Scheme
32).64 The insertion of selenium into the zinc–carbon bond in
alkyl and aryl zinc halides gives zinc alkyl and aryl seleno-
lates which react with α-bromo carbonyl compounds to
afford α-selenocarbonyl compounds (Scheme 33).65 Finally, the
nucleophilic ring-opening of enantiomerically pure oxazolidin-
2-ones with thiolates provides a convenient route to optically
pure β-amino sulfides.66

2.2.2 Functionalised sulfides and selenides

α-Metalated sulfides are useful intermediates for the elabor-
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ation of sulfides. The direct deprotonation of acyclic and cyclic
aliphatic sulfides with Schlosser’s base provides a convenient
route to these intermediates, and their reaction with electro-
philes gives the expected sulfide adducts in good yield (Scheme
34).67 Reaction of α-metalated sulfides formed by this method
with carbon electrophiles has not been fully studied but appears
to be inefficient in all but the simplest cases. The deproton-
ation and subsequent alkylation of (phenylseleno)acetonitrile
has been studied and under optimised conditions has been
shown to be synthetically useful.68 Similarly, the deprotonation
of methoxy(methylseleno)methylbenzene and reaction with
electrophiles gives substituted α-methoxy benzyl selenides in
good yield (Scheme 35).69 The regioselective ring-opening
of epoxides with tributylstannyl phenylselenolate under
Lewis acid conditions has been employed in the synthesis
of β-hydroxy selenides (Scheme 36).70 Samarium() thio-
lates, generated by the reduction of aryl thiocyanates with
samarium() iodide, also react with epoxides to give β-hydroxy
sulfides.71 The regiospecific ring-opening of potassium glycidate
with tert-butyl thiol and lithium hydroxide has also been
reported.72

A series of recent studies on the diastereoselectivity of addi-
tion to carbonyl groups in systems having an α-oxathiolane
ketal has appeared in the literature.73 In simpler spirocyclic
sulfides the nucleophile favours approach from the face anti
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to the sulfur atom thus avoiding the electron density on the
heteroatom (Scheme 37).73

The regioselective anodic α-difluorination of simple sulfides
having an electron-withdrawing group in the α-position has
been reported and employs a novel fluorine source to achieve
the difficult transformation.74 The synthesis of partially fluorin-
ated sulfides has also been achieved by treatment of fluorine-
containing α-acetoxy sulfides with Lewis acid in the presence
of silyl enol ethers (Scheme 38).75 In a related procedure, the
reaction of cyclic and acyclic enamines with sulfoxides in the
presence of magnesium diisopropylamide, gives α-alkylated
sulfides in moderate yield (Scheme 39).76 Enantiomerically pure
fluoropyruvaldehyde N,S-ketals have been prepared via a
tandem process involving a sulfurane mediated, stereospecific
Pummerer rearrangement and a 1,2-migration of a p-tolyl-
sulfanyl group (Scheme 40).77,78 The Sommelet [2,3]-sigma-
tropic dearomatisation of cyclic sulfonium salts gives product
sulfides with good diastereoselectivity (Scheme 41).79 Unfortu-
nately, analogous acyclic systems show little diastereo-
selectivity.79 In a related reaction involving the [2,3]-sigmatropic
rearrangement of sulfur ylides, novel sulfur-containing hetero-
cycles are formed from thienyl substituted cyclic sulfonium salts
(Scheme 42).80 The asymmetric [2,3]-sigmatropic rearrange-
ment of chiral allylic selenonium ylides has been used in the
preparation of diastereoisomerically pure substituted homo-
allylic selenides (Scheme 43).81 Methylthiomethyl esters of
α,β-unsaturated acids are readily converted into the corres-
ponding ketene acetals by O-silylation. Subsequent thermal
rearrangement gives a sulfur ylide which undergoes [2,3]-sigma-
tropic rearrangement to give, after methanolysis, δ-alkylthio-
α,β-unsaturated methyl esters in moderate yield. The overall
transformation corresponds to the introduction of an alkyl-
thiomethyl group at the γ-carbon of an α,β-unsaturated ester
(Scheme 44).82

The sulfenylation of olefins remains a common approach to
the preparation of sulfides and the development of several new
sulfenylating systems has been reported. The treatment of tri-
methylsilyl enol ethers derived from ketones and esters with
quinone mono-S,O-acetals gives α-sulfenylated products in
excellent yield (Scheme 45).83 The system is also effective for the
sulfenylation of electron-rich aromatic and heteroaromatic
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trifluoroethyl sulfenylating agent for alkenes and alkynes
(Scheme 46).84 The 1,2-addition of simple alkyl disulfides to
alkenes using K-10 montmorillonite impregnated with ZnCl2

has been reported. Decomplexation of the intermediate zinc
chloride complex gives the desired trans-1,2-bis(methylthio)
addition products in good yield (Scheme 47).85 Finally, the
conversion of Michael acceptors into α-phenylthio carbonyl
compounds via cobalt-catalysed hydrosulfenylation has
recently been reported. The process, however, is still far from
general and is effective only for acceptors unsubstituted in the
β-position (Scheme 48).86 Trapping experiments indicate that
the reaction proceeds via radical intermediates.

The radical addition of thiophenol to methacrylamide 9,
bearing the (R,R)-2,5-diphenylpyrrolidine chiral auxiliary, pro-
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ceeds to give sulfide adducts in good yield and with excellent
diastereoselectivity (Scheme 49).87 A new route to conform-
ationally restricted cyclic β-amino acids has been developed
which involves a sequential thiophenol radical addition–
cyclisation strategy (Scheme 50).88 Treatment of sulfides with
triisopropylsilyl substituted acetylenic trifluoromethane sul-
fones (triflones) under radical conditions leads to α-alkynylated
products in good yield (Scheme 51).89 A novel and direct
α-azidation of cyclic sulfides with a hypervalent iodine()
reagent and trimethylsilyl azide has also been reported.90

A novel [3 1 2] cycloaddition approach to α-(methylthio)
cyclopentanones has been reported. The intermediate allyl
cationic species can react with vinyl ethers and thioethers gen-
erating substituted cyclopentanones in good yield, and with
excellent selectivity for the more sterically hindered regioisomer
(Scheme 52).91 The cycloaddition reactions of vinyl selenides
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have also been studied. (E)-1-Phenylseleno-2-(trimethylsilyl)-
ethene undergoes stereoselective Lewis acid promoted [211]
cycloadditions to give highly functionalised cyclopropyl
selenide adducts (Scheme 53).92 The same substrate reacts with
dimethyl 1,1-dicyanoethene-2,2-dicarboxylate under Lewis acid
conditions to give [2 1 2] cycloadducts. Variation of the
Lewis acid was found to change the regiochemistry of
the cycloaddition.93

Thiiranium and seleniranium ions are useful intermediates in
the synthesis of sulfides and selenides. The chemistry of these
species has been the subject of a recent review.94 The treatment
of alkyl vinyl ethers with toluene-p-sulfenyl chloride and a
Lewis acid, generates the corresponding thiiranium ions. Sub-
sequent treatment of these intermediates with another alkyl
vinyl ether unit followed by a carbon nucleophile, allows the
formation of polyfunctional sulfides in good yield (Scheme
54).95 An intramolecular cyclisation involving a ‘sterically
protected’ seleniranium ion has been reported.96 A bulky aryl
substituent on selenium prevents nucleophilic attack on the
selenium centre in the seleniranium ion, and thus promotes the
selective formation of carbocycles.

The introduction of selenium into unsaturated molecules in a
stereocontrolled fashion via the asymmetric selenenylation of
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olefins remains an active area of research. Recent advances
in the asymmetric oxyselenenylation of olefins have been
reviewed.97,98 The subject is also discussed in a recent review on
thiiranium and seleniranium ions.94 In essentially all the sys-
tems developed to date, the chiral selenenylating reagent, for
example the selenenyl triflate, sulfate or halide, is formed from
the corresponding diselenide. In a recent study, camphor
derived selenenyl sulfate 10, prepared in situ by reaction of the

corresponding diselenide with ammonium persulfate, was
shown to be highly effective in the asymmetric methoxyselene-
nylation of mono- and disubstituted olefins.99 Interestingly, the
counterion appears to have a marked effect on the selectivity
and yield of the reaction. The otherwise analogous camphor
selenenyl chloride, bromide, and triflate were all found to be
much less effective in the reaction.99 Chiral ferrocenyl selenenyl
triflate 11 has also been used in the highly diastereoselective
methoxyselenenylation of a variety of olefins.100

The mechanistic course of the asymmetric methoxyselene-
nylation reaction has recently been studied in some detail.101 In
the reaction, the use of chiral selenium electrophiles results in
the preferential formation of one seleniranium ion intermedi-
ate. Using competition experiments, it has been shown that
seleniranium ion formation is reversible and hence, any prefer-
ence for one seleniranium ion over the others must arise from a
difference in stability between them. This has been elegantly
illustrated by independently preparing both syn-seleniranium
ions that would arise in a typical methoxyselenenylation reac-
tion and studying their reaction with methanol. In the case
of seleniranium ion 12, corresponding to the intermediate
formed by re attack in the methoxyselenenylation of styrene
and which is assumed to be the more stable seleniranium ion,
quenching with methanol gives the expected (R,S)-product with
no loss of stereochemical information at the benzylic position.
In the case of seleniranium ion 13, corresponding to the
product of si attack on styrene and presumably the least stable
seleniranium ion, a mixture of (S,S) and (R,S) products was
obtained, clearly showing that some dissociation–reassociation
to form the most stable seleniranium ion had occurred (Scheme
55).101 In the same study, calculations have been carried out
which support the experimental observations.

In reactions with olefin substrates having a pendent nucleo-

Scheme 54

OMe

OMe

pTolS

OMe

S

pTol

OMe

MeO

OMeOMe

pTolS

1. pTolSCl
MeNO2 -20°C

2. LiClO4 or 
    TiCl4

+

+

allyl TMS

(1:1.5 mixture of diastereomers)

94%

O
SeOSO3H

10

SeOTf

H Me

NMe2

11

Fe



J. Chem. Soc., Perkin Trans. 1, 1999, 641–667 649

phile, the intermediate seleniranium ion reacts in an intra-
molecular fashion to give non-racemic cyclic products. A family
of new asymmetric selenenylating agents has been prepared and
these have been used in a short route to tetrahydroisoquinoline
alkaloids (Scheme 56).102 A detailed study into the structural
and electronic optimisation of these selenium electrophiles has
been carried out.103 An asymmetric selenenylation approach to
enantiomerically enriched butyrolactones has recently been
reported using an enantiomerically pure selenenyl triflate
reagent (Scheme 57).104 Finally, the development of a catalytic
system for oxyselenenylation–elimination has been reported. In
this system, the active selenenylating agent is a chiral selenenyl
sulfate generated from the diselenide by electron-transfer in the
presence of peroxodisulfates and a metal salt. Oxidation of the
intermediate selenide with peroxodisulfate induces elimination
and regeneration of the key selenenyl sulfate. Although turn-
over is still inefficient the system shows considerable promise
(Scheme 58).105

The regio- and relative stereochemistry of the non-
asymmetric selenenylation of allylic alcohols has been the
subject of a recent study.106 The azidoselenenylation of phenyl
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substituted alkenes has been reported and proceeds with com-
plete regio- and stereocontrol (Scheme 59).107 Iodosobenzene
diacetate–diphenyl diselenide has recently been developed as
an electrophilic selenenylating system (Scheme 60).108 Finally,
the mechanism of phenylselenoetherification of unsaturated
alcohols, involving seleniranium ion intermediates, has been
investigated in a recent molecular orbital study.109

The Michael addition of thiols or thiolates to α,β-
unsaturated carbonyl compounds remains a convenient method
for the introduction of a thioalkyl or aryl group into a mole-
cule. The Michael addition of thiols to unsubstituted dien- and
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trienones usually occurs at the terminal position of the conju-
gated system. Carrying out the addition in the presence of
titanium tetrachloride allows the β-addition product to be
obtained selectively (Scheme 61).110 Zeolites have been found
to catalyse the addition of aliphatic thiols to various α,β-
unsaturated carbonyl compounds giving sulfide adducts in
good yield.111

Further work has been carried out on the catalytic asym-
metric addition of thiolates to α,β-unsaturated carbonyl com-
pounds. Recent studies have concentrated on the design of the
chiral ligand employed in the process and have highlighted the
importance of the trans-arrangement of groups on the ethylene
bridge of the ligand and also the need for the ligand to bind in a
tridentate fashion.112 It has also been found that a bulky sub-
stituent in the 2-position of the aryl ring of the thiolate was
essential for high reactivity and enantioselectivity in the addi-
tion reactions. Addition to cyclic and acyclic α,β-unsaturated
esters gives the sulfide adducts in good yield and high enantio-
meric excess (Scheme 62).113 A heterobimetallic catalyst con-
veniently prepared from an amino diol and LiAlH4 catalyses
the asymmetric Michael addition of thiols to cyclic and acyclic
α,β-unsaturated ketones (Scheme 63).114 Perhaps the most
general catalytic asymmetric system to date has recently been
reported and employs a chiral lanthanum–sodium hetero-
bimetallic catalyst (Scheme 64).115 In an interesting extension of
the chemistry, asymmetric protonation of a chiral samarium()
enolate intermediate formed upon the addition of thiols to
acyclic α,β-unsaturated thioesters, gives chiral sulfide adducts,
substituted in the β-position, in high enantiomeric excess.
The hydroxy group of a proximal part-coordinated binaphthol
moiety appears to act as the proton source in the asymmetric
protonation step (Scheme 65).115

A thiolate or selenolate triggered tandem Michael–aldol
reaction has been used in the synthesis of α-phenylthiomethyl
and α-phenylselenomethyl-β-hydroxy esters (Scheme 66).116 A
similar tandem process involving Michael addition of methyl-
lithium to dimethyl 2-phenylselenofumarate has been employed
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in the synthesis of highly substituted 4-phenylselenobutyrol-
actones (Scheme 67).117 In addition, the conjugate addition of
primary and secondary amines to the same Michael acceptor
gives 2-phenylseleno-3-aminosuccinates in good yield and with
moderate diastereoselectivity.118

Finally, the aldol reaction of β-phenylselanyl trimethylsilyl
enol ethers with benzaldehyde has been studied. Under Lewis
acid conditions, the syn aldol product predominates regardless
of the stereochemistry of the starting silyl enol ether. The fluor-
ide mediated aldol reaction, however, gives predominantly the
anti aldol product at low temperatures (Scheme 68). 119

2.2.3 Vinylic and acetylenic sulfides and selenides

Many new approaches to the preparation of vinyl selenides and
sulfides have been developed. The desilylation of (Z)-α-
dimethylphenylsilyl vinyl sulfides with fluoride ion gives the
expected vinyl sulfides in most cases.120 A convenient procedure
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to convert cyclohexanone, via the gem-dithiol, into cyclo-
hexenyl sulfide has been reported (Scheme 69).121 The intra-
molecular Heck reaction of an α-sulfenyl enol triflate has been
used in the synthesis of a vinyl sulfide precursor to the cardeno-
lides (Scheme 70).122

The regioselective thioselenation of acetylenes and allenes
has been reported. Treatment of acetylenes with diphenyl
disulfide and diphenyl diselenide under photochemical condi-
tions gives the mixed addition product in moderate yield
(Scheme 71).123 Thioselenation of allenes under similar condi-
tions gives β-selenoallylic sulfides in excellent yield and with
moderate selectivity for the Z-isomers (Scheme 72).124 In a
related reaction, dithiolation of allenes has been achieved using
diphenyl disulfide and a catalytic amount of diphenyl ditel-
luride (Scheme 73).124 A similar system has also been employed
in the 1,4-dithiolation of 1,3-dienes.125

A double radical cyclisation–β-fragmentation protocol has
been reported which allows the regio- and stereoselective prep-
aration of 3-vinyldihydrothiophenes from acyclic γ-yne vinyl
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sulfides. The reaction is of particular interest as it proceeds via a
5-exo-trig, β-fragmentation, and 5-endo-trig cyclisation
sequence (Scheme 74).126

A series of recent studies has led to a versatile approach
to the synthesis of vinyl sulfides which is based on the reaction
of titanocene alkylidenes with carbonyl compounds. The
treatment of aldehydes, ketones, esters and thioesters with
organotitanium species formed from either methoxybis-
(phenylthio)methane or tris(phenylthio)methane and a low
valent titanium species, gives substituted vinyl sulfides in
good yield (Scheme 75).127,128 A similar titanocene-promoted
olefination reaction of thioesters using 1,1-bis(phenylthio)-2-
(dimethylphenylsilyl)ethanes gave γ-alkylthio allylsilanes in
moderate to good yield (Scheme 76).129

The 1-chalcogenoformylolefination of ketones and aldehydes
has been achieved by initial treatment of a carbonyl substrate
with 1-lithio-2-ethoxyvinyl phenyl sulfide or selenide followed
by dehydration to give substituted vinyl sulfide or selenide
products (Scheme 77).130 The reaction of but-3-ynylic 1-ols
and 2-ols with diaryl disulfides or diselenides and carbon
monoxide in the presence of tetrakis(triphenylphosphine)-
palladium, results in an interesting thio/seleno lactonisation to
afford β-(arylthio) and β-(arylseleno) α,β-unsaturated γ- and
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δ-lactones in moderate yield (Scheme 78).131 The palladium-
catalysed hydrocarboxylation of phenylthioallene has recently
been reported and gives phenyl 3-acetoxypropenyl sulfide
products in good yield (Scheme 79).132 In addition, the
palladium-catalysed coupling of bis(triisopropylsilyl) disulfide
with acetylenes gives 1,2-thioalkyl substituted olefins after in
situ removal of the silyl groups and quenching with a suitable
electrophile (Scheme 80).133

Vinyl sulfides have been prepared via a highly diastereo-
selective Pauson–Khand reaction between a stable, internally
chelated, dicobalt pentacarbonyl complex of a camphor-
derived acetylenic sulfide and strained olefins (Scheme 81).134 A
series of uracil nucleosides have been found to react with
diphenyl disulfide, or diphenyl diselenide, in the presence of
bis(trifluoroacetoxy)iodobenzene to give the corresponding C-5
phenylsulfenylated or phenylselenenylated products in good
yield (Scheme 82).135

Vinyl sulfides undergo facile carbonyl ene reactions with
aldehydes under Lewis acid conditions to give vinyl sulfide
products in good yield and with excellent diastereoselectivity
(Scheme 83).136 The Pummerer reaction of vinyl spiro sulfoxide
14 proceeds via a butadienylthionium ion to give acyclic 1,3-
diene sulfides in good yield (Scheme 84).137 In recent years the
utility of vinylogous and additive Pummerer reactions in the
synthesis of carbo- and heterocyclic ring systems has been
studied. The vinylogous Pummerer reaction of amido sulfox-
ides has been used to great effect in the formation of nitrogen
containing heterocycles (Scheme 85).138 The additive Pummerer
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reaction of simple alkenes has been used for the preparation of
γ-lactams (Scheme 86).138

Finally, ortho-substituted aryl alkyl sulfides have been pre-
pared by treatment of chloro-substituted fused thiophenes with
organolithiums. The ring-opening reaction appears to proceed
via attack at sulfur and the anion generated from the ring-
opening can be quenched with various electrophiles (Scheme
87).139

The hydroboration of bis(alkylseleno)acetylenes with dicyclo-
pentyl- or dicyclohexylborane followed by iodination under
basic conditions gives (Z)-1,2-bis(alkylseleno)-1-cycloalkyl-
ethenes in good yield (Scheme 88).140 In a more general
approach, (Z)-1,2-bis(alkylseleno)ethenes are conveniently
prepared by the hydrozirconation of bis(alkylseleno)acetylenes.
Further reaction of the (Z)-1,2-bis(alkylseleno)ethenes with
organozinc halides in the presence of a nickel catalyst gives
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(Z)-1-alkylselenoalk-1-enes in good yield and with retention of
the alkene stereochemistry (Scheme 89).141 Another approach
to vinyl selenides also involves the hydrozirconation of acetyl-
enic selenides and subsequent protonolysis.142 The seleno-
carbonylation of terminal alkynes using selenoesters with
copper() catalysis has been reported and gives (Z)-β-aryl-
seleno-α,β-unsaturated ketones in good yield (Scheme 90).143

Treatment of α-bromovinyl selenides and sulfides with butyl
lithium gives α-chalcogeno vinyllithiums via bromine–lithium
exchange. Subsequent quenching with a variety of electrophiles
gave functionalised vinyl selenides and sulfides (Scheme 91).144

The stereoselective synthesis of 1,4-dienyl selenides has been
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achieved via the palladium catalysed cross-coupling of (E)-α-
selanylvinylstannanes with allylic bromides (Scheme 92).145 The
analogous coupling of α-selanylvinylstannanes with vinyl
bromides has been employed as a route to 1,3-dienyl selen-
ides.146 The stereoselective synthesis of stereochemically defined
1,3-dienes via the palladium-catalysed coupling of (Z)- or (E)-
alkenylboranes with (Z)- or (E)-2-halo-1-(alkylseleno)ethenes
has been reported (Scheme 93).147 A similar approach to related
systems involves the treatment of bis(alkylseleno)ethenylbor-
anes with sodium methoxide and copper bromide–dimethyl
sulfide complex. The resultant vinyl copper species were then
coupled with allyl bromide 148 The preparation of enynyl selen-
ides and sulfides has been achieved via the direct palladium
catalysed coupling of α-bromovinylic selenides and sulfides
with terminal alkynes (Scheme 94).149 Similar systems have also
been prepared by the palladium catalysed cross-coupling of
(E)-selanylvinylstannanes with haloalkynes.146
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Two reports of the preparation of acetylenic selenides via the
reaction of alkynyliodonium sulfonates with aryl selenolates
have been made.150,151 In one example, a series of functional-
ised alkynyl phenyl selenides were efficiently prepared from
alkynyliodonium triflates (Scheme 95).150 Finally, alkynyl aryl
selenides have been prepared in good yield by the reaction
of bis(alkynyl)mercury compounds with diaryl diselenides
(Scheme 96).152

2.2.4 Allylic and benzylic sulfides and selenides

The free radical addition of phenyl trichloromethyl selenide to
alkenes and subsequent dehydrochlorination gives 3,3-dichloro-
allylic selenides in excellent yields (Scheme 97).153 Chiral func-
tionalised benzylic sulfides have been prepared in good yield
and in moderate to high enantiomeric excess by chiral base-
mediated asymmetric alkylation of tricarbonylchromium(0)
benzyl sulfide complexes (Scheme 98).154 Interestingly, the
asymmetric deprotonation of tricarbonylchromium(0) benzyl
sulfide complexes under these conditions proceeds in the
opposite stereochemical sense to the deprotonation of the
corresponding benzyl ethers. The novel Michael-induced
Ramberg–Backlund reaction of α-bromovinyl sulfones has
been reported. Nucleophilic thiol addition to the vinyl sulfone,
proton transfer, and subsequent rearrangement gives allylic
sulfides in good yield and with good selectivity for the (E)-allyl
sulfide isomer (Scheme 99).155 An allylsamarium reagent, pre-
pared by the reduction of allyl bromide with samarium metal,
reacts with sodium alkyl thiosulfates,156 or dialkyl and diaryl
disulfides to give allyl sulfides in good yield (Scheme 100).157

Similarly, allyl sulfides have been prepared by the reaction
of allyl bromide with sodium alkyl thiosulfates promoted by
indium in aqueous media.158 Tin in aqueous media has also
been used to prepare allylic and propargylic selenides from the
corresponding bromides and dialkyl or diaryl diselenides.159

The insertion of selenium into the zinc–carbon bond of
allylzinc bromide and reaction of the resulting zinc allyl seleno-
lates with diaryliodonium salts gives allyl aryl selenides.65

Finally, a single example of the enantioselective synthesis of
allylic sulfides has been reported, and is achieved via the
palladium catalysed reaction of an allylic carbonate with tert-
butyl trimethylsilyl sulfide in the presence of a chiral ligand
(Scheme 101).160
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3 Synthesis of sulfoxides and selenoxides

3.1 Oxidation of sulfides and selenides

The oxidation of sulfides and selenides to the corresponding
sulfoxides and selenoxides remains a popular subject for
research. This section will deal first with new achiral oxidising
systems before discussing new methods for enantioselective
oxidation. All the examples deal specifically with the oxidation
of sulfides although it is likely that the majority of these oxidis-
ing systems would be equally applicable to the oxidation of
selenides. The synthesis of optically active selenium compounds
is the subject of a recent review which contains a section on
the preparation of non-racemic selenoxides by asymmetric
oxidation.161

3.1.1 Non-stereoselective oxidising systems

New methods for the oxidation of dialkyl, aryl alkyl, and diaryl
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sulfides have been reported. These include hydrogen peroxide
with a molybdenum-silicate catalyst; 162 silica gel supported
magnesium monoperoxyphthalate; 163 calcium hypochlorite and
moist alumina; 164 sodium periodate supported on wet silica
with microwave thermolysis; 165 molecular oxygen oxidation
catalysed by either an aminopolycarboxylate complex of
ruthenium(),166 or a BiBr3–Bi(NO3)3 binary catalyst; 167

molecular oxygen and aldehydes; 168 hydrated Bi(NO3)3 in acetic
acid; 169 hydrated iron() and copper() nitrates under solvent
free conditions; 21 hydrogen peroxide with either 2-phenyl-
selenobenzoic acid or 2-iodosobenzoic acid as catalyst; 170

hydrogen peroxide in hexafluoropropan-2-ol; 171 hydrogen per-
oxide and imine derivatives as mediators; 172 3-hydroperoxy-1,2-
dioxolane 15; 173 alumina-supported iodobenzene diacetate with

microwave irradiation under solvent-free conditions; 174 and
iodosobenzene activated by a catalytic amount of a quaternary
ammonium salt.175 New methods for the oxidation of aryl
alkyl sulfides have also been reported. These include an oxo-
chromium() complex 16; 176 3-aryl-2-tert-butyloxaziridines
under high pressure; 177 manganese dioxide and hydrochloric
acid; 178 Oxone and aluminium trichloride in the solid state; 179

iron() and copper() nitrate dinitrogen tetroxide complexes in
solution or solid phase; 180 and 4,4-dibromo-5-methylpyrazol-3-
one 17 with acetic acid.181 In an example of a diastereoselective
oxidation using an achiral oxidant, enantiomerically pure
N-protected β-amino sulfides were treated with sodium
hypochlorite, 2,2,6,6-tetramethylpiperidin-1-yloxyl and potas-
sium bromide to give, after deprotection at nitrogen, syn-β-
amino sulfoxides.182

3.1.2 Stereoselective oxidising systems

A discussion of the area of asymmetric sulfoxidation can be
found in a chapter of a recent monograph.183 Many of the more
popular methods for the asymmetric oxidation of sulfides and
selenides involve the use of modified Sharpless conditions. The
non-linear effects (NLEs) of several reagent systems derived
from the original Sharpless formulation have been measured.
Each variant shows very different NLEs indicating that differ-
ent active complexes are present in each case.184 Further
examples of the use of modified Sharpless conditions in the
asymmetric oxidation of sulfides have been reported. The
potential anti-cancer agent erylsulfoxide 18 has been prepared
by asymmetric sulfoxidation with tert-butyl hydroperoxide
(TBHP)–Ti(OPri)4 and (2)-diethyl tartrate, the absolute con-
figuration of the natural product thus being confirmed.185

Oxidation of 2-substituted 1,3-dithianes with TBHP–Ti(OPri)4

and (1)-diethyl tartrate give the product 1,3-dithiane 1-oxides
with high trans-selectivity and enantioselectivities which depend
markedly on the substituent at the 2-position of the dithiane
(Scheme 102).186 Under identical conditions, acyldithiolane
sulfoxides have been prepared in high enantiomeric excess via
the Sharpless asymmetric oxidation of silyl enol ethers derived
from the starting ketones (Scheme 103).187 The new chiral
ligand, 2,2,5,5-tetramethylhexane-3,4-diol 19, has been used
with Ti(OPri)4 and cumene hydroperoxide in the oxidation of
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sulfides. Good enantioselectivities are observed but yields of
sulfoxide are low, with significant quantities of sulfone being
isolated. Kinetic studies have shown that a combination of
enantioselective oxidation and kinetic resolution in the over-
oxidation step is responsible for the high enantioselectivities
observed.188 The use of enantiomerically pure TADDOL†
ligand 20 in the modified Sharpless oxidation of sulfides has
also been reported, however enantioselectivities were generally
lower than those obtained with more conventional ligands.189

The use of other hydroperoxides in the Sharpless oxidation has
been disclosed. Furyl hydroperoxides have been employed as
stoichiometric oxidants and appear to shorten reaction times,
and in some cases, lead to an improvement in enantio-
selectivity.190–192 The use of enantiomerically pure (S)-1-phenyl-
ethyl hydroperoxide as the stoichiometric oxidant in the
Ti(OPri)4 mediated oxidation of aryl alkyl sulfides, leads to
poor asymmetric induction in the oxidation step followed by
efficient kinetic resolution in the subsequent oxidation to the
sulfone (Scheme 104).193 Further studies into the nature of
oxygen transfer from enantiomerically pure titanium()-alkyl-
peroxo complexes to sulfides have also been made.194

The vanadium catalysed asymmetric oxidation of substituted
thioanisoles using hydrogen peroxide and a chiral Schiff-base
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ligand 21 has been reported.195 A similar ligand has been used
in the vanadium catalysed oxidation of di(tert-butyl) disulfide
in a catalytic asymmetric approach to enantiomerically pure
amines.196

The use of biocatalysts for asymmetric oxidation of sulfides
remains a viable alternative to chemical methods. The fungus
Beauveria bassiana has been used in the preparation of two
diastereoisomers of methionine sulfoxide,197 whilst toluene
dioxygenase and naphthalene dioxygenase have been shown
to give complementary selectivities in the sulfoxidation of a
limited number of aryl alkyl sulfides (Scheme 105).198 Similarly,
two enantiocomplementary Baeyer–Villiger monooxygenases
have been used to catalyse the biooxidation of a variety of
prochiral sulfides.199 A vanadium containing bromoperoxidase
was found to be effective specifically in the asymmetric oxid-
ation of cyclic sulfides.200 Finally, the active site of myoglobin
has been engineered to mimic the action of a peroxidase.
Replacement of key residues in the active site gives rise to a
mutant which oxidises sulfide substrates more efficiently than
horseradish peroxidase.201

3.2 Non-oxidative routes to sulfoxides and selenoxides
3.2.1 Unfunctionalised sulfoxides and selenoxides

The synthesis of chiral sulfoxides via nucleophilic displacement
at sulfur is the subject of a chapter in a recent monograph.202

The preparation of optically active selenoxides via optical reso-
lution and other miscellaneous methods has recently been
reviewed.161 A new general one-pot synthesis of aryl alkyl sulf-
oxides involves the oxaziridine mediated oxidation of thiolates,
the intermediate sulfenates then being alkylated in situ to give
sulfoxides in good yield (Scheme 106).203 Alkyl pyridyl sulf-
oxides have been prepared in high enantiomeric excess by reso-
lution through inclusion complexation with a tartaric acid
derived chiral host.204 Lipase-catalysed kinetic resolution of
racemic sulfoxide 22, where the sulfoxide group is remote from
the reacting site, has been used to obtain both enantiomers of
the sulfoxide, a key intermediate in the synthesis of a platelet
aggregation inhibitor (Scheme 107).205 A sulfoxide reagent
bound to a soluble PEG polymer support has been prepared for
use in a modified Swern oxidation procedure.206 The use of a
polymer bound reagent allows the odourless, bound sulfide by-
product to be conveniently recovered, reoxidised, and reused
with no loss of activity (Scheme 108). The nickel catalysed
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addition of aryl and alkyl zincate reagents to enantiomerically
pure vinyl sulfoxides proceeds with good diastereoselectivity,
the product sulfoxides being key intermediates in a synthesis
of a phosphodiesterase IV inhibitor (Scheme 109).207 Lithiation
of tert-butylsulfinylferrocene and reaction with a variety of
electrophiles provides a convenient route to enantiopure 1,2-
disubstituted sulfinylferrocenes.208 Complexation of 1-tert-
butylsulfinyl-2-formylferrocene, prepared by this approach,
with Ti(OPri)4 followed by the addition of Grignard reagents,
gave the product alcohols with complete diastereocontrol
(Scheme 110).208

The addition of alkyl radicals to vinyl sulfoxides has been the
focus of a series of recent studies.209 The diastereoselectivity
of the β-addition of alkyl radicals to 2-arylsulfinylcyclopent-2-
enones depends largely on the aryl group and also upon the
presence of Lewis acid additives. In all cases addition occurs to
give trans-products but introduction of a bidentate Lewis acid
reverses the enantioselectivity of the addition by chelating to
both the ketone carbonyl group and the sulfoxide oxygen
(Scheme 111).210 The addition of alkyl radicals to a diastereo-
isomeric mixture of (4R)- and (4S)-4-methyl-2-arylsulfinyl-
cyclopent-2-enones gave the diastereoisomerically pure (4R)-
addition product while the (4S)-isomer of the starting material
remained unreacted (Scheme 112).211 Similarly, radical addition
to the corresponding 5-methyl substrates shows an analogous
kinetic separation.211

An interesting approach to the preparation of cyclic sulf-
oxides involves the development of SO transfer agents. The
thiirane 1-oxide, or episulfoxide, of hindered olefin 23, under-
goes thermal decomposition and concomitant SO transfer to a
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variety of 1,3-dienes giving cyclic sulfoxides in good yields
(Scheme 113).212 Similarly, rhodium catalysed SO transfer
from trans-stilbene episulfoxide to norbornadiene gives the two
exo-orientated episulfoxides in moderate yield (Scheme 114).49

3.2.2 Functionalised sulfoxides and selenoxides

The application of chiral sulfoxides as stereocontrol elements in
organic synthesis is the subject of a chapter in a recent mono-
graph.213 The sulfoxide moiety has been successfully employed
to mediate the asymmetric desymmetrisation of substituted
bicyclic acetals.214 2,2,5-Trisubstituted tetrahydropyrans were
prepared with high diastereoselectivity by the Lewis acid
induced nucleophilic cleavage of bicyclic acetals.215,216 The
reaction displays simultaneous 1,3- and 1,6-asymmetric induc-
tion as a result of the chiral sulfoxide group. In one example,
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the product sulfoxide was used in the total synthesis of
(2)-malyngolide (Scheme 115).215 Using a similar approach a
C2-symmetrical bis-sulfoxide has been employed in the asym-
metric desymmetrisation of meso-cyclopentitol.217

Many new examples of sulfoxide directed reactions have
been reported. These include the directed reduction of β,γ-
diketo sulfoxides; 218 the stereoselective reduction of β-keto sulf-
oxides having a stereogenic hydroxylic centre at the δ-position
(Scheme 116); 219 the hydrocyanation of enantiomerically pure
β-(p-tolylsulfinyl) aldehyde which gives the corresponding
β-sulfinyl cyanohydrin in high diastereoisomeric excess; 220 the
highly diastereoselective reduction of chiral β-imino sulfoxides
with 1-benzyl-1,4-diazabicyclo[2.2.2]octane tetrahydroborate
(BAOTB), giving anti β-amino sulfoxides in excellent yield
(Scheme 117); 179 the conversion of β-keto sulfoxides to the
corresponding epoxides; 221 and the cyclopropanation, under
various conditions, of (S)-(1)-α-(diethoxyphosphoryl)vinyl
p-tolyl sulfoxide (Scheme 118).222 Finally, the Michael triggered,
intramolecular Michael addition of ester enolates to enantio-
merically pure vinyl sulfoxides gives product sulfoxides with
high diastereoselectivity (Scheme 119).223
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Sulfoxides are very effective in controlling the stereo-
chemistry of radical reactions at the α-carbon and this is
particularly so when the radical is further stabilised by an
electron-withdrawing group (Scheme 120).224 Studies to probe
the influence of dipole-dipole interactions and allylic strain on
the diastereoselectivities of reactions involving substituted
sulfinyl arylmethyl radicals have been carried out (Scheme
121).224
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A chiral sulfoxide moiety has been incorporated into a tether
for the intramolecular [5C 1 2C] pyrone–alkene cycloaddition
giving modest diastereoselectivity in the formation of the
product cyclic sulfoxides.225 α-Diazo-β-oxo sulfoxides have been
prepared by diazo transfer adjacent to the sulfoxide group.226

The rhodium catalysed decomposition of these compounds
in the presence of a suitable diene allows the thione S-oxide
intermediate to be trapped (Scheme 122).227 The diene–
dienophile dual reactivity of conjugated sulfines has been
studied. Diels–Alder reaction of these species with a range of
dienes and dienophiles allows access to a variety of cyclic
sulfoxides.228

3.2.3 Unsaturated sulfoxides and selenoxides

New approaches to the synthesis of unsaturated sulfoxides have
been reported. Tributyl[2-(p-methoxyphenylsulfinyl)prop-2-
enyl]stannane reacts with aldehydes in the presence of titanium
chloride with useful levels of 1,4-induction to give product vinyl
sulfoxides in moderate yield (Scheme 123).229 A general route to
(Z)-1-chlorovinyl sulfoxides has been reported and involves
the reaction of (α-lithiated-α-p-tolylsulfinylmethyl)diphenyl-
phosphine oxide with a variety of aldehydes in a Horner–Wittig
reaction. Selectivity for the (Z)-vinyl sulfoxides was found to
decrease dramatically as the steric demand of the aldehyde
increased (Scheme 124).230 The Michael addition of β-keto
sulfoxides to highly stabilised acceptors occurs to give
functionalised 2-amino-4H-pyrans in good yield and with high
diastereoselectivity (Scheme 125).231

Enantiomerically pure sulfinyl dienes have been prepared via
Stille coupling of halovinyl sulfoxides and vinylstannanes.
Using a range of iron tricarbonyl transfer agents, the corre-
sponding sulfinyl diene iron(0) tricarbonyl complexes were
formed in good yield and with high diastereoselectivity
(Scheme 126).232 The diastereoselectivity of allylations on
enantiomerically pure sulfinyl dienal iron(0) tricarbonyl com-
plexes has also been studied.233 Sulfinyl chlorohydrins have been
converted via the corresponding epoxyvinyl sulfoxides into
enantiomerically pure hydroxy 2-sulfinyl dienes for use in the
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Diels–Alder reaction (Scheme 127).234,235 The use of unsatur-
ated sulfoxides as dienes, dienophiles and dipolarophiles in
cycloaddition reactions remains an important area of research.
trans-2-Methylene-1,3-dithiolane 1,3-dioxide, a chiral ketene
equivalent, readily undergoes 1,3-dipolar cycloaddition with
cyclic and acyclic nitrones (Scheme 128).236 Similarly, chiral
vinyl sulfoxides have been employed as dipolarophiles in
asymmetric 1,3-dipolar cycloadditions with oxidopyridinium
betaines allowing rapid access to the tropane skeleton (Scheme
129).237 The dienophilic behaviour of enantiomerically pure
(Z)-3-p-tolylsulfinylacrylonitriles 24 has also been studied.238

The synthesis of sulfinyl-1,3-dienes and their use in asymmetric
synthesis has recently been reviewed.239 In addition, other
enantiomerically pure sulfoxide-containing dienes have recently
been reported. These include (S)-2-(p-tolylsulfinyl)-1,4-benzo-
quinones 25; 240 (R)-4-(p-tolylsulfinylmethyl)quinols 26; 241 and
enantiomerically pure 2-sulfinylbuta-1,3-dienes 27, employed
for the first time in a hetero Diels–Alder reaction.242,243 The
diastereoselectivity of the 1,4-conjugate addition of organo-
aluminium reagents to substituted quinols such as 26 has also
been studied.244
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4 Synthesis of sulfones and selenones

Selenones have yet to be exploited to any significant degree in
organic synthesis and hence this section will deal solely with the
preparation of sulfones.

The present interest in solid phase synthesis has led to the
development of a number of new sulfone-based linkers. Most
of these rely, for their cleavage, on the propensity of sulfones to
undergo β-elimination under basic conditions or SN29 dis-
placements with organometallic reagents. Polymer-bound
allylic sulfones have been prepared by lithiation of polystyrene
beads and subsequent quenching with sulfur dioxide then allyl
bromide (Scheme 130). A similar tether has been utilised in the
solid phase synthesis of tertiary amines.245 A closely related
linker has been prepared by treating a hydroxylated polystyrene
resin with divinyl sulfone. Attachment of the starting material
to the solid support can be achieved by a second Michael
addition and cleavage can be achieved on treatment with base.
This new sulfone linker has been used in the synthesis of tetra-
hydroisoquinolines (Scheme 131).246 Finally, a ‘safety-catch’
linker, sulfide 28, has been developed and used in the solid
phase synthesis of aryl sulfonamides. Only after oxidation of
the sulfide to the sulfone does the linker become base labile,
hence, premature cleavage of the substrate from the support is
prevented.247
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Sulfones have also found application recently in a new class
of carbonyl protecting group cleavable by treatment with base
(Scheme 132).248

4.1 Oxidation of sulfides and sulfoxides

Many of the oxidising systems discussed for the preparation of
sulfoxides and selenoxides, give sulfones and selenones as by-
products of over-oxidation. Relatively little new work has been
done on the oxidation of sulfides to sulfones and the corres-
ponding transformation of selenides to selenones has received
even less attention. The oxidation of dialkyl sulfoxides to the
corresponding sulfones has recently been achieved using hydro-
gen peroxide and titanium containing zeolites.249 The first
report of the oxidation of episulfides to episulfones has recently
been made. The oxidation employs an Oxone –trifluoroacetone
reagent system and works particularly well for bicyclic systems
but not, surprisingly, for cyclohexene thiirane (Scheme 133).250

A discussion of novel episulfone substitution and ring-opening
reactions via α-sulfonyl carbanion intermediates has been
published.251

Sulfone endoperoxide 29, prepared by thiol–oxygen co-
oxidation of 1,5-dienes, peracid oxidation to the sulfone, and
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protection of the hydroxy group, has been found to have in vitro
anti-malarial activity comparable to that of artemisinin
(Scheme 134).252,253 Other related sulfone trioxanes have also
been prepared but have significantly lower anti-malarial
activity.254

A temporary sulfone tether has been used to stereospecific-
ally deliver a methoxycarbonylmethylene group to the enone
moiety in (2)-carvone in an intramolecular Michael addition
(Scheme 135).255 The tether is initially introduced by sulfenyl-
ation of the isopropenyl olefin followed by oxidation of the
sulfide to the corresponding sulfone.

4.2 Non-oxidative routes to sulfones
4.2.1 Functionalised sulfones

The addition of diethylamine to acetylenic sulfones followed
by hydrolysis gives 1-phenylsulfonyl ketones in good yield
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(Scheme 136).256 The reduction of α-alkyl-β-keto sulfones
under various conditions allows access to both syn- and anti-α-
alkyl-β-hydroxy sulfones (Scheme 137).257 The lipase catalysed
resolution of racemic α-hydroxymethyl sulfones by esterifi-
cation with vinyl acetate has been studied.258 Changing the alkyl
substituent at the chiral centre from methyl to benzyl leads to a
complete reversal in selectivity (Scheme 138). Baker’s yeast
mediated kinetic resolution of racemic α-phenylsulfonylcyclo-
pentanones has been employed in an approach to 4-(phenyl-
sulfonylmethyl)carboxylic acids in either enantiomeric series
(Scheme 139).259 The overall sequence corresponds to the intro-
duction of a phenylsulfonylmethyl group at an unactivated
centre in the original carboxylic acid. Stereoselective baker’s
yeast reduction has also been used in a route to enantiomeri-
cally pure (1R,2R)- and (1S,2S)-2-alkyl-1-phenylsulfonylcyclo-
propanes (Scheme 140).260 The 1,2-shift of a phenylsulfonyl
group has been observed on the treatment of 1,1-bis(phenyl-
sulfonyl)cyclopropanes with fluoride ion.261 Alkynyl phenyl-
sulfonyl cyclopropanes and epoxides have been prepared by the
conjugate addition of either dimethylsulfoxonium methylide or
ButOOLi to enyne sulfones (Scheme 141).262

Functionalised sulfones have also been prepared by the
reduction of α-bromo sulfones using NaBH4 and catalytic
diphenyl diselenide.263 In a related reaction, reduction of
2,5-dibromo-2,5-bis(phenylsulfonyl)hexane with samarium()
iodide results in an interesting intramolecular coupling reaction
to give trans-2-iodo-1,2-dimethyl-1-phenylsulfonylcyclobutane
in quantitative yield (Scheme 142).263 The palladium catalysed
reaction of carbonates derived from γ-hydroxypropenyl sul-
fones, with β-keto esters and 1,3-diketones provides convenient
access to tetrasubstituted dihydrofurans via a tandem γ-allylic
substitution and cyclisation process. In most cases the reaction
shows good diastereoselectivity for the trans-sulfone product
(Scheme 143).264

Radical addition to vinyl sulfones provides an effective route
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to functionalised sulfones. High 1,2-asymmetric induction was
achieved in the 1-hydroxyalkyl radical addition to acyclic
3-hydroxy-1-methylthio-1-(p-tolylsulfonyl)alk-1-enes. The add-
ition is highly syn-selective regardless of initial olefin geometry.
Reductive desulfurisation then gives the corresponding sulfone
adducts in excellent overall yield (Scheme 144).265 Similar 1,2-
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induction was achieved in radical additions to α,β-unsaturated
sulfones lacking the thiomethyl group (Scheme 145).266 An
interesting sequential approach to various bicyclic oxygen
heterocycles involving radical addition to vinyl sulfones has
been reported.267 Initial 5-exo-trig radical addition to the vinyl
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sulfone, followed by either a second 5-exo-trig cyclisation or
hydrogen atom capture by the intermediate α-sulfonyl radical,
gives the observed product mixtures (Scheme 146).267 A radical
cyclisation approach to substituted tetrahydrofurans has been
reported which involves the 5-exo-trig radical cyclisation of
halo(allyl)sulfones to give trans-2,4-disubstituted tetrahydro-
furans as the major products (Scheme 147).268

4.2.2 Vinyl sulfones

trans-Disubstituted vinyl sulfones have been prepared via the
Wittig reaction of aromatic aldehydes with (p-tolylsulfonyl-
methylene)triphenylphosphorane under microwave irradiation
(Scheme 148).269 Vinyl sulfones having pendant hydroxy groups
can be regioselectively lithiated α to sulfur. The resulting
anions react efficiently with electrophiles to give the expected
sulfone adducts which upon treatment with phosphoric acid
give dihydropyran sulfone derivatives (Scheme 149).270 Enyne
sulfones have been prepared via the pyrolysis of 4-aryl-1,2,3-
selenadiazol-5-yl p-tolylvinyl sulfones, prepared in turn from
phenacylsulfanylacetic acid (Scheme 150).271 Treatment of
bridged vinyl sulfones with either n-butyllithium or LDA results
in smooth β-metallation and subsequent reactions with electro-
philes are then possible. When toluene-p-sulfonyl fluoride is
employed as the electrophile in the aza-bridged series, the bis-
sulfone product was subsequently employed as a key intermedi-
ate in the synthesis of epibatidine.272 After hydrogenation and
asymmetric elimination of the 7-azabicyclo[2.2.1]heptane bis-
sulfone with a chiral base derived from ephedrine, the desired
vinyl sulfone was obtained in moderate enantiomeric excess
(Scheme 151).273 Dienyl and enynyl sulfones have been prepared
by the ring-opening of oxanorbornenic derivative 30 with
an alkynyllithium, followed by reduction and isomerisation
(Scheme 152).274 Chiral manganese salen complexes have
been used in the catalytic asymmetric epoxidation of cyclic
2-sulfonyl-1,3-dienes. The presence of the sulfone moiety leads
to a significant increase in observed enantioselectivities com-
pared to unsubstituted cyclic dienes (Scheme 153).275 Finally,
enantiomerically enriched alk-2-ynyl toluene-p-sulfinates,
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chiral at both the α-carbon and the sulfur atom are transformed
into chiral allenyl sulfones on treatment with palladium acetate,
with only a small loss in stereochemical integrity. To explain the
stereochemical observations, a mechanism has been proposed
involving coordination of palladium to the sulfinate sulfur and
the alkyne, conjugate addition of palladium to the triple bond
to give an allenylpalladium species, and reductive elimination to
give the product allenyl sulfones (Scheme 154).276

4.2.3 Allylic and benzylic sulfones

Allylic sulfones can be conveniently prepared via the zinc-
mediated coupling of allyl bromides with alkyl or arylsulfonyl
chlorides.277 Benzylic trifluoromethyl sulfones have been pre-
pared by the reaction of electron-deficient aromatic halides
with the anion of ethyl (trifluoromethylsulfonyl)acetate
followed by decarboxylation (Scheme 155).278 An unusual
sequence corresponding to the overall oxyallylation of tri-
methylsilyl enol ethers, involves the Diels–Alder reaction of
dienes with sulfur dioxide followed by Lewis acid decom-
position of the cycloadduct. The methoxonium ion produced
can be trapped with nucleophiles to give allylic sulfone products
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(Scheme 156).279 The deprotonation and alkylation of chiral-at-
iron allyl and vinyl sulfones occurs regio- and stereoselectively
although the products observed depend greatly on the electro-
phile used (Scheme 157).280 The palladium catalysed hydrosulf-
ination of allenes using tosylhydrazine and a palladium()
catalyst gives allylic sulfones in moderate to good yield
(Scheme 158).281 In addition, acyclic and cyclic tert-butyl
sulfones have been stereoselectively prepared via palladium
catalysed reaction of the corresponding acetates or carbonates
with 2-methylpropane-2-sulfinate in the presence of a P,P-
chiral ligand (Scheme 159).160

5 Conclusions

The importance of organo-sulfur and -selenium chemistry in
organic synthesis can not be overstated. The emergence of new
stereoselective reactions and efficient asymmetric processes
suggest further advances are imminent.
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